

Organic Compounds Found in Dokai Bay, Japan

Akiko Terashi, Yoshifumi Hanada, Azuma Kido, and Seiichi Ishikawa

The Kitakyushu Municipal Institute of Environmental Health Sciences, Shin-ike 1-2-1, Tobata-ku, Kitakyushu-shi, 804, Japan

Dokai Bay is a 13km-long narrow bay with average depth of 7m, which is located in north Kyushu in Japan. There had been serious environmental pollution caused by untreated domestic and industrial wastewater in this area. The pollution was accelerated by the characteristics of this enclosed shape with little water exchange to open sea. Nowadays, the water quality of this bay has improved as a result of the regulation of wastewater, the spreading of sewage treatment system and the dredging of polluted sediment. But there are still many factories producing chemicals, iron and steel around the bay. And large residence area stretches upstream. Therefore, many kinds of chemical substances may accumulate in this area than in an open area.

Today computer-assisted gas chromatography / mass spectrometry has improved to be very useful for analysis of environmental pollutant(Sheldon et.al.1978; Coleman et.al.1980; Elder et.al. 1981). In this study, we analyzed organic chemicals remaining in the sediment by this method to understand the pollution state of Dokai Bay and to obtain information of chemicals that persist in the environment.

MATERIALS AND METHODS

Sediment sample was collected on 28 September 1990 and stored at 5°C until analysis. Sample was treated with following three methods in order to get additional information in mass spectral identification.

A fifty gram sample was extracted twice with 100ml of acetone-hexane(1:1). The extract was washed with water and concentrated to 10ml. Acidic and basic components were then extracted with 10ml of 1N-NaOH and 1N-HCl, respectively. The organic layer was concentrated again and applied to a silica-gel column and eluted with 5% ether in hexane. The eluate was concentrated to 1ml. The extracts with 1N-NaOH and 1N-HCl were adjusted to pH<2 and pH>12 Send reprint requests to A.Terashi at the above address.

respectively, then extracted with hexane and concentrated to 1ml. For the acidic fraction, a derivatization reaction was performed with bis(trimethylsilyl)trifluoroacetoamide at 80°C for 30min (Knapp 1979) (method A).

A sample was extracted with 1N-HCl and re-extracted with dichloromethane after pH adjustment. The organic layer was concentrated and trimethylsilyl(TMS) derivatization was done at the same condition as mentioned above (method B).

A sample was extracted with 1N-NaOH and re-extracted with dichloromethane after pH adjustment, and concentrated to 1ml (method C).

A JEOL DX303 mass spectrometer coupled to a Hewlett-Packard 5890A gas chromatograph was used under the following conditions: column, Ultra 2 fused silica capillary column (0.32mm i.d. x 25m x 0.52 μ m); column temperature, 60°C (lmin) increased at 10°C/min to 300°C, held for 10min; injection temperature, 300°C; carrier gas, helium; GC/MS interface temperature, 280°C; ionization voltage, 70eV; scan time, lsec/c; scan range, 50-500 mass units. Electron impact mass spectral data were acquired and processed with a JEOL DA5100 data system.

The identifications presented here are based on coincidence of gas chromatographic retention times and equivalence of sample spectra with those of authentic compounds or published spectra (Mclafferty et.al.1989). Some compounds were inferred to be present by comparison of mass spectra with those of similar compounds.

RESULTS AND DISCUSSION

The organic compounds found in Dokay Bay sediment are listed in Table 1. Most of them originated from industrial uses.

Alkanes were not prominent, but their presence was confirmed by a reconstructed ion chromatogram at m/z 85. It sugests that their origins were artificial sources, since there was no predominance of odd carbon numbers(matsumoto et.al. 1981). Triterpanes such as hopane, methylhopane, trisnorhopane and cholestane, which were well known to exist in petroleum(Eganhouse 1982), were also identified.

Aliphatic acids were a major component in the acidic fraction. C12-C26 Acids were identified from the acidic fraction of method A, and C5-C18 acids were identified from the extract of method B. The difference of carbon number of the two methods is attributed to increasing hydrophobidity with carbon chain length. C12-C18 Aliphatic acids with even carbon numbers were predominant. These are commonly distributed in all living organisms and known to be

T a b l e $\ 1$ Organic Compounds Identified in Dokai Bay

		Elemental		_		Relative
0.	Compounds	Formula	M.W.	Ext.ª	Ident. ^b	Size
]	Polycyclic Aromatic Hydrocan					
1	naphthalene	$C_{10}H_{8}$	128	Α	rt+Ms	+++
2	Cl-naphthalene	C_1H_0	142	Α	MS	+-
3	C2-naphthalene	$C_{12}H_{12}$	156	Α	MS	
4	C3-naphthalene	ChaHha	170	A	MS	
5 6	C4-naphthalene	C_{1}	184	A	MS	-
6	C5-naphthalene	Cistia	198	A	MS	+
7	C3-tetrahydronaphthalene	$C_{13}H_{18}$	174	Α	MS	
8	C2-propenylnaphthalene	C13H18 C15H16	196	A	MS	-
9	C3-PropenyInaphthalene	C ₁₆ H ₁₈	210	A	MS	+
0	biphenyl	$C_{12}H_{10}$	154	A	RT+MS	-
1	C1-biphenyl	(in a Hua	168	Α	MS	-
2	acenaphthylene	$C_{12}H_{8}$	152	A	rt+Ms	+
3	acenaphthene	C12H2 C12H10	154	A	RT+MS	-
4	fluorene	Նկ գՄկը	166	Α	rt+MS	+
5	phenanthrene	$C_{14}H_{10}$	178	A	RT+MS	++
6	anthracene	C_{1} \underline{A} \underline{H}_{1} $\underline{\Omega}$	178	A	rt+MS	+
7	C2-anthracene	Gatha	206	Α	MS	
8	C4-anthracene	C18H18 C15H10	234	Α	MS	+
9	benzo(def)fluorene	$C_{15}H_{10}$	190	Α	MS	+
20	fluoranthene	G ₆ H ₄₀	202	Α	RT+MS	++
21	pyrene	$G_{6}H_{10}$	202	Α	RT+MS	++
2	Cl-pyrene ^c	$C_{17}H_{12}$	216	Α	MS	+
1 2 2 3	C2-pyrene ^c	CaaHaa	230	Α	MS	-
4	phenylnaphthalene	C16H12 C18H10	204	A	MS	+
Ã 5 6	benzo(ghi)fluoranthene	$C_{18}H_{10}$	226	A	MS	+
26	benz(a)anthracene	Ալ լեր չ	228	A	RT+MS	++-
27	chrysene / triphenylene	C ₁₈ H ₁₂	228	A	RT+MS	++
7 8	naphthacene	$C_{18}H_{12}$	228	A	MS	+
29	Cl-chrysene ^c	$C_{19}H_{14}$	242	Α	MS	+
80	C2-crycene ^e	C20H16	256	Α	MS	
1	dihydrobenz(a)anthracenec	G ₁₈ H ₁₄	230	Α	MS	+,
2 3 4	o-terphenyl	Chatha	230	Α	RT+MS	+
3	m-terphenyl	CraHra	230	Α	rt+MS	
4	p-terphenyl	C18H14 C19H12	230	A	RT+MS	-
5	methylenechrysene ^c	$C_{19}H_{12}$	240	Ą	MS	+
6 7	benzo(b) fluoranthene	Cantha	252	Ą	RT+MS	++
37	benzo(k) fluoranthene	$C_{20}H_{12}$	252	A	RT+MS	++
	/ benzo(j)fluoranthene	g	050		TOTAL 1.873	
8	benzo(e)pyrene	$C_{20}H_{12}$	252	Ą	RT+MS	++
9	benzo(a)pyrene	C20H12	252	Ą	RT+MS	++
0	perylene	C20H12	252	Ą	RT+MS	++
1	CI-benzo(a)pyrene	U21H14	266	Ą	MS	+
2	C2-benzo(a)pyrene	Coothia	280	Ą	MS	-
13	methyleneperylene	C ₂₁ H ₁₂ C ₂₂ H ₁₂	264	Ą	MS	
4	indeno(1, 2, 3, -cd)pyrene	(22H12	276	Ą	RT+MS	++
5	benzo(ghi)perylene	C22H2 C23H12 C23H14 C22H4	276	Ą	RT+MS	++-
6	C1-indeno(1, 2, 3-cd)pyrene	123th 4	290	A .	MS	
7	benzo(b)chrysene	122H14	278	Ą	MS	++
8	Cl-benzo(b)chrysene	$\cup_{23}\Pi_{16}$	292	Ą	MS	
19	dibenzo(a, e)pyrene ^c	C24H14	302	Ą	MS	+
50	triphenylbenzene	$C_{24}H_{28}$	306	A	MS	-

Table 1 (Continued)

No. Compounds	Elemental Formula	M.W.	Ext.ª	Ident.b	Relative Size
Azaarenes					
Azaarenes 51 C2-quinoline 52 C3-quinoline 53 azafluorene 54 acridine 55 phenanthridine 56 C1-acridine 57 azapyrene 58 C1-azapyrene 59 C2-azapyrene 60 azachrysene 61 C1-azachrysene 62 azabenzo(a)pyrene 63 C1-azabenzo(a)pyrene 64 azabenzo(ghi)perylene 65 azabenzo(b)chrysene	NN NN NN HHHHHHHHHHHHH 112233445671718141131 GGGGGGGGGGGGGGGGGG	157 171 167 179 179 193 203 217 231 229 243 253 267 277 279	A A A A A A A A A A A A A A A A A A A	RT+MS RT+MS RT+MS RT+MS RS-MS-MS-MS-MS-MS-MS-MS-MS-MS-MS-MS-MS-MS	+ +/- + +/- ++ +/- ++ +/- ++ +/- ++
66 azadibenzo(a, e)pyrenec	$C_{23}H_{13}N$	303	A	MS'	+/-
Aliphatic Hydrocarbons 67 heptadecane 68 docosane 69 tricosane 70 tetracosane 71 cholestane 72 trisnorhopane 73 norhopane 74 hopane 75 methylhopane 76 dimethylhopane	C ₁₇ H ₃₆ C ₂₂ H ₄₆ C ₂₃ H ₄₈ C ₂₄ H ₅₀ C ₂₇ H ₄₈ C ₂₇ H ₄₆ C ₂₉ H ₅₀ C ₃₀ H ₅₂ C ₃₁ H ₅₄ C ₃₂ H ₅₆	240 310 324 338 372 370 398 412 426 440	A A A A A A A	RT+MS RT+MS RT+MS RT+MS MS MS MS MS MS	++ + + + + + + + + + + + + + + + + + +
Chlorobenzenes 77 o-dichlorobenzene 78 m-dichlorobenzene 79 p-dichlorobenzene 80 trichlorobenzene	C ₆ H ₄ Cl ₂ C ₆ H ₄ Cl ₂ C ₆ H ₅ Cl ₂ C ₆ H ₅ Cl ₃	146 146 146 180	A A A	RT+MS RT+MS RT+MS MS	+ + +
Aliphatic Acid — as tr 81 pentenoic acid — TMS 82 hexanoic acid — TMS 83 heptanoic acid — TMS 84 octanoic acid — TMS 85 nonanoic acid — TMS 86 decanoic acid — TMS 87 decenoic acid — TMS 88 undecanoic acid — TMS 90 dodecanoic acid — TMS 91 dodecenoic acid — TMS 92 tridecanoic acid — TMS 93 tetradecanoic acid — TMS 94 tetradecenoic acid — TMS 95 pentadecanoic acid — TMS 96 hexadecanoic acid — TMS	CoH 6QSi Ch 6QSi Ch 6QSi Ch 12QSi Ch 12QSi Ch 14AQSi	ives 172 188 202 216 230 244 242 258 256 272 270 286 300 298 314 328	B B B B B B B B B A, B B A, B B A, B	MS MS KI+MS KI+MS KI+MS KI+MS KI+MS KI+MS KI+MS KI+MS KI+MS	++++++++++++++++++++++++++++++++++++++

		Elemental				Relative
No.	Compounds	Formula	M.W.	Ext.ª	Ident.b	Size
97	hexadecenoic acid -TMS	$G_{19}H_{38}O_{2}Si$	326	В	MS	++
98	heptadecanoic acid -TMS	$C_{20}H_{42}O_{2}Si$	342	Ą	RT+MS.	++
100	heptadecenoic acid -TMS	C20H4002Si	340	A	MS'	+
100 101	octadecanoic acid -TMS octadecenoic acid -TMS	$C_{21}H_{44}O_{2}Si$	356 354	A, B A	RT+MS MS	+++
102	eicosanoic acid -TMS	C ₂₁ H ₄₂ O ₂ Si C ₂₃ H ₄₈ O ₂ Si	384	A	RT+MS	+
103	heneicosanoic acid -TMS	$C_{24}H_{50}O_{2}Si$	398	Ä	RT+MS	+/-
104	docosanoic acid -TMS	$C_{25}H_{52}O_{2}Si$	412	Ä	RT+MS	+
105	tricosanoic acid -TMS	$C_{26}^{23}H_{54}O_{2}^{2}Si$	426	Ā	RT+MS	+
106	tetracosanoic acid -TMS	$C_{27}H_{56}O_{2}Si$	440	Α	MS.	++
107	pentacosanoic acid -TMS	$C_{28}H_{58}O_{5}Si$	454	Ą	MS'	+/-
108	hexacosanoic acid -TMS	C29H6002Si C8H48Q4Si2	468	A	MS'	+
109 110	oxalic acid -2TMS	(2 14 7) C3	234	В	MS	++
111	nonanedioic acid -2TMS pentadecanedioic acid -2TMS	C ₁₅ H ₃₂ O ₄ Si ₂ C ₂₁ H ₄₄ O ₄ Si ₂	332 416	B B	RT+MS RT+MS	++
112	hexadecanedioic acid -2TMS	$C_{22}H_{46}O_{4}Si_{2}$	430	В	RT+MS	+
113	octadecenedioic acid -2TMS	C24H48O4Si2	456	B	MS'	+/-
114	tetradecanetrioic acid -3TMS	$C_{23}H_{48}^{2}O_{6}Si_{3}$	504	B	MS'	+/-
	Hydroxylated Polycycic Aromatic			trimethyls	ilyl deriy	atives
	hydroxyanthracene -TMS	C ₁₇ H ₁₈ OSi	266	Ą	MS'	+
116	Cl-hydroxyanthracene -TMS ^c	C ₁₈ H ₂₀ OSi	280	A	MS'	+
117 118	hydroxypyrene -TMS° Cl-hydroxypyrene -TMS°	CioHioSi	290 304	A	MS' MS'	+ +
119	hydroxychrysene -TMS°	C ₂₀ H ₂₀ OSi C ₂₁ H ₂₀ OSi	316	A A	MS'	+
120	hydroxybenzo(a)pyrene-TMS ^c	$C_{23}H_{20}OSi$	340	Å	MS'	+/-
	Phenols - as trimethylsilyl de	erivatives				
121	iso-propylphenol-TMS	C ₁₂ H ₂₀ OSi	208	A	MS	+
122	hydroxybenzaldehyde-TMS	$C_{10}H_{14}O_{2}Si$	194	В	MS	++
123	hydroxymethoxybenzaldehyde-TM	S C11H16O3Si	224	B	MS	++
124	bromophenol-TMS	C ₉ H ₁₃ BrOSi	244	A , B	MS	++
	Aromatic Acids — as trimethyls benzoic acid —TMS		es 194	В	MS	+++
126	phenylacetic acid -TMS	C10H4O2Si C11H6O2Si	208	B	MS	+
127	dichlorobenzoic acid -TMS	C ₁₀ H ₁₃ Cl ₂ O ₂ Si		B	RT+MS	+/-
128	dibromobenzoic acid -TMS	Contho Bro Oo Si	350	B	MS'	+
129	dibromohydroxybenzoic acid -2TMS	$C_{13}H_{20}Br_{2}O_{3}Si_{2}$	438	В	MS'	+/-
100	Miscellaneous	C II O	100		187	
130	dibenzofuran	$C_{12}H_{8}O$	168	A	MS MS	++
131 132	benzonaphthofuran benzonaphthothiofen	C16H100	218 234	A A	MS MS	+
133	anthraquinone	C. TH. D.	208	Ä	MS	+
134	dibutyl phthalate	Calloo	278	Ä	MS	+
135	dioctyl phthalate	C24H28O2	390	Α	MS	++
136	methoxybenzenediamine	C16 H 0 O C16 H 0 O C14 H 0 O C16 H 2 O C24 H 3 O C7 H 0 N O C13 H 3 O O C13 H 3 O O	138	Č A	MS	+
137	tributylmethyltin	$C_{13}H_{30}Sn$	306	A	MS	+/-

 $^{^{\}rm a}$ Extraction method by which the compound was identified. $^{\rm b}$ Compound identification methods were as follows: RT+MS, comparing the retention time and mass spectrum with authentic reference; MS, comparing the mass spectrum with published data; MS', comparing the mass spectrum with similar compounds. $^{\rm c}$ Or other isomers.

used in soap and synthetic detergent manufacture.

The most predominant compounds in thid study were polycyclic aromatic hydrocarbons (PAHs). Around Dokai Bay, there are many factories which use petroleum and coal as raw materials and for fuel. Hanada et.al. (1990) reported much of PAHs in Dokai Bay originated from industrial effluents. Hydroxylated PAHs identified suggest oxidative transformation occurring in the environment.

Benzoic acids, phenylacetic acid, hydroxybenzaldehyde and hydroxy methoxybenzaldehyde could be of natural origin. However, they are widely used in various industries and also may be formed by oxidative degradation of other chemical substances. Further study is necessary to know the exact origins of these substances.

Concerning Basic compounds, some azaarenes and methoxybenzene-diamine were identified. Many kind of basic compounds in the sediment could probably not be extracted with IN-HCl or acetone-hexane, since basic compounds may be strongly adsorbed to sediment. It is probable that azaarenes have the same origin as PAHs. Methoxybenzenediamine itself is not in industrial use. It may have occurred as a result of reductive transformation and/or biological methylation in the environment.

Figure 1 shows mass spectrum of tributylmethyltin(Bu₃MeSn). Although the sample mass spectrum overlapped with dimethylnaphthalene(mw=156), the isotopic pattern of tin was obvious. The possible origin is impurity of tributyltin compounds or transformation products of them in the environment. Maguire (1984; 1986) detected Bu₃MeSn in coastal sediment with concentration of zero to 8% of that of Bu₃Sn⁺. They also found natural occurring of methylation of Bu₃Sn⁺ by experiment (1985). Considering the concentration of Bu₃Sn⁺ in Dokai Bay(0.02-0.05mg/kg)(Japan Environment Agency 1989), Bu₃MeSn should have been at very small amount and could hardly have given the mass spectrum if it had been present as less than 10% of Bu₃Sn⁺ in concentration. Therefore, the concentration of Bu₃MeSn in Dokai Bay is thought to be unusually high. It may suggest that the transformation from Bu₃Sn⁺ to Bu₃MeSn could be a significant pathway in a certain condition. However, Bu₂Me₂Sn, BuMe₃Sn and Me₄Sn were not detected in this study.

Dichlorobenzene and trichlorobenzene were found reflecting industrial activities. Bromophenol, dibromobenzoic acid and dibromohydroxybenzoic acid were identified as TMS derivatives (See Figure 2). Since dibromobenzoic acid and dibromohydroxybenzoic acid were not commercially available, they were identified by comparing with the mass spectral pattern of corresponding

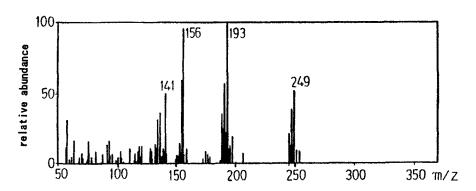


Figure 1. Mass spectrum of tributylmethyltin found in the sample

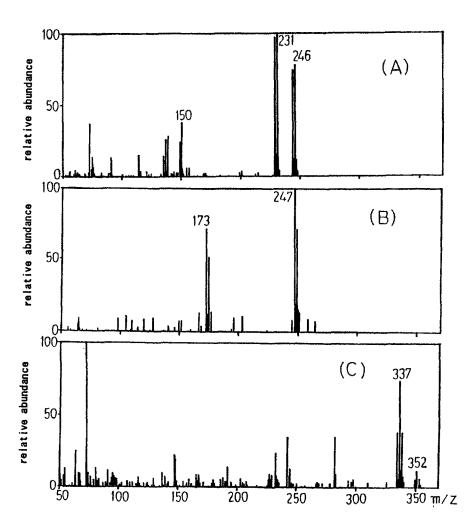


Figure 2. Mass spectra of (A)bromophenol, (B)dichlorobenzoic acid and (C)dibromobenzoic acid found in the sample (as TMS derivatives)

chlorinated compounds. The brominated compounds found here are not in industrial use. Chlorophenol and dichlorobenzoic acid are useful raw material in chemical industry. But chlorophenol could occur by hydroxylation of dichlorobenzenes which are abundant in this area. Furtheremore, benzoic acid and relative compounds could be formed by oxdative degradation of other chemical substances such as PAHs and pesticides (Tahori 1971; Haque 1974) in the environment.

REFEREFCES

Coleman WE, Melton RG, Kopfler FC, Barone KA, Aurand TA, Jellison MG (1980) Identification of organic compounds in a mutagenic extract of a surface drinking water by a computerized gas chromatography/mass spectrometry. Environ Sci Technol 14:576-588 Eganhouse RP, Kaplan IR (1982) Extractable organic matter in municipal wastewaters, 2 hydrocarbons: molecular characterization. Environ Sci Technol 16: 541-551

Elder VA, Proctor BL, Hites RA (1981) Organic compounds found near dump sites in Niagara Falls, New York. Environ Sci Technol 15: 1237-1243

Hanada Y, Mizuguchi M, Sueta S, Takeuchi R, Kido K (1990) The state of pollution causing fossil fuel in enclosed coastal sea. J Environ Lab Assoc 15: 149-155

Haque R, Fread VH (1974) Environmental dynamics of pesticides. Plenum Press, New York

Japan Environment Agency (1989) Chemicals in the environment. Tokyo

Knapp DR (1979) Handbook of analytical derivatization reaction. John Wiley & Sons, New York

Maguire RJ (1984) Butyltin compounds and inorganic tin in Ontario. Environ Sci Technol 18: 291-294

Maguire RJ, Tkacz RJ (1985) Degradation of the tri-n-butyltin species in water and sediment from Toronto Harbor. J Agr F Chem 33: 947-953

Maguire RJ, Tkacz RJ, Chau YK, Bengert GA, Wong PTS (1986) Occurrence of organotin compounds in water and sediment in Canada. Chemosphere 15: 253-274

Matsumoto G, Hanya T (1981) Comparative study on organic constituents in polluted and unpolluted waters. Water Res 15: 217-224

Mclafferty FW, Stauffer DB (1989) The Wiley/NBS registry of mass spectral data. Wiley-Interscience, New York

Sheldon LS, Hites RA (1978) Organic compounds in the Delaware river. Environ Sci Technol 12: 1188-1194

Tahori AS (1971) Pesticide terminal residues. Butterworths, London

Received May 28, 1992; accepted October 10, 1992.